
输入读取

读取整行字符串（包括空格）

连续读多行直到 EOF

处理单行多元素输入

用 strtok 分割：

用空格分开时将 strtok的分隔符设置成空格即可。

对于存入数组的情况：

连续读取未知数量数字直到换行

1 char line[200];
2 fgets(line, sizeof(line), stdin);

1 char s[200];
2 while (fgets(s, sizeof(s), stdin)) {
3 // 处理每一行
4 }

1 char s[200];
2 fgets(s, sizeof(s), stdin); char *p = strtok(s, ",");
3 while (p != NULL) {
4 int x = atoi(p);
5 // 用 x
6 p = strtok(NULL, ","); // 从原位置继续往后切
7 }

1 char line[200];
2 int arr[50], cnt = 0;
3 fgets(line, sizeof(line), stdin);
4 char *p = strtok(line, " ");
5 while (p != NULL) {
6 arr[cnt++] = atoi(p);
7 p = strtok(NULL, " ");
8 }

读取带空格的单词，直到遇到换行

示例输入：

apple banana orange

字符串 → 数组 → 排序

1 int x;
2 while (scanf("%d", &x) == 1) {
3 // 用 x
4 if (getchar() == '\n')
5 break;
6 // 换行就停
7 }

1 char s[100];
2 while (scanf("%s", s) == 1) {
3 // 处理 s
4 if (getchar() == '\n')
5 break;
6 }

scanf 与 fgets 混用

此时使用以下写法防止相互干扰：

1 int n; char line[200];
2 scanf("%d", &n);
3 getchar(); // 吃掉\n
4 fgets(line, sizeof(line), stdin);

1 char line[200];
2 int arr[100], cnt = 0;
3
4 // 读取整行
5 if (fgets(line, sizeof(line), stdin) == NULL) return 0;
6
7 // strtok 分割（空格分隔）
8 char *p = strtok(line, " \n"); // 顺便把 '\n' 也当分隔符
9 while (p != NULL) {
10 arr[cnt++] = atoi(p);
11 p = strtok(NULL, " \n");

字符串处理

记得要引入 string.h才能使用下列方法

长度/比较

子串检索

分割字符串

类型处理

记得要引入 ctype.h才能使用下列方法

12 }
13
14 // 排序
15 qsort(arr, cnt, sizeof(int), cmp);

1 #include <string.h>
2 size_t len = strlen(s);
3 int r = strcmp(a, b); // <0, =0, >0

1 char* p = strchr(s, 'x'); // 第一次出现 'x' 的位置
2 char* q = strstr(s, "abc"); // 第一次出现子串 "abc"的位置

1 #include <string.h>
2 char line[200];
3 fgets(line, sizeof(line), stdin);
4 for(char* p = strtok(line, " ,\n"); p; p = strtok(NULL, " ,\n"))
5 {
6 // p 是每个 token
7 }

Important

这里for循环中的 p等价于 p!=NULL，后面传入NULL表示从上一次 strtok 停下的位置继
续往后切。

isdigit：是否是数字字符 '0'..'9'

isalnum：是否是字母或数字（混合判断）

这几个因为用法太显而易见了就不给示例了。

妙妙工具

qsort
记得引入 stdlib.h。基本用法形如：

使用示例：

给 int 数组升序排序

isspace：是否是空白字符（空格、换行、Tab 等）

islower / isupper：是否是小写 / 大写字母

tolower / toupper：大小写转换

1 qsort(base, n, size, cmp);

base：数组首地址（比如 arr）

n：元素个数

size：每个元素的字节数（通常 sizeof(arr[0])）

cmp：比较函数指针（你自己写，决定升序/降序/按什么字段排）

1 #include <stdio.h>
2 #include <stdlib.h>
3 int cmp_int_asc(const void *a, const void *b) {
4 int x = *(const int*)a;
5 int y = *(const int*)b;
6 return (x > y) - (x < y); // 避免 x-y 溢出
7 }
8
9 int main() {
10 int arr[] = {10, 3, 25, -7, 8};
11 int n = sizeof(arr) / sizeof(arr[0]);
12 qsort(arr, n, sizeof(arr[0]), cmp_int_asc);
13
14 for (int i = 0; i < n; i++)
15 printf("%d ", arr[i]);
16 return 0;
17 }

cmp 返回值的规则

排结构体

假设要按 score 升序排，score 相同按 id 升序：

printf 格串

补零（或者补别的什么）

精度（保留位数）

浮点：控制小数位数（四舍五入）

比较函数 cmp(a,b) 必须满足：

返回 <0：表示 a 应该排在 b 前面

返回 0：表示相等
返回 >0：表示 a 应该排在 b 后面

1 typedef struct {
2 int id;
3 int score;
4 } Node;
5
6 int cmp_node(const void *a, const void *b) {
7 const Node *x = (const Node*)a;
8 const Node *y = (const Node*)b;
9 if (x->score != y->score)
10 return (x->score > y->score) - (x->score < y->score);
11 return (x->id > y->id) - (x->id < y->id);
12 }
13
14 int main() {
15 qsort(nodes, n, sizeof(nodes[0]), cmp_node);
16 }

1 printf("%05d\n", 42); // 00042
2 printf("%02d:%02d\n", 3, 7); // 03:07

1 printf("%.2f\n", 3.14159); // 3.14
2 printf("%.0f\n", 3.9); // 4

字符串：最大输出长度

动态宽度/精度

宽度由参数给：

内存操作

malloc：申请一块未初始化的内存

特点：申请到的内容是垃圾值，要手动初始化。

calloc：申请 + 自动清零

（这俩都是用完要 free()的，你最好别忘了）

memset

memcpy

文化常识（确信）

1 printf("%.3s\n", "abcdef"); // abc

1 int w = 8;
2 printf("^%0*d^\n", w, 123); // "^00000123^"

1 int n = 10;
2 int *a = (int*)malloc(n * sizeof(int)); // 申请10个int
3 if (a == NULL) {
4 // 内存不足
5 }

1 int n = 10;
2 int *a = (int*)calloc(n, sizeof(int)); // 10个int，全部为0

1 int a[100]; memset(a, 0, sizeof(a));

1 int a[5] = {1,2,3,4,5};
2 int b[5];
3 memcpy(b, a, sizeof(a));

ASCII相关
计数排序必需品：

标准 ASCII 可打印字符是：

位运算

& 按位与操作，按二进制位进行"与"运算 (A & B) 将得到 12 即为 0000 1100

\| 按位或运算符，按二进制位进行"或"运算 (A \| B) 将得到 61 即为 0011 1101

^ 异或运算符，按二进制位进行"异或"运算 (A ^ B) 将得到 49 即为 0011 0001

~ 取反运算符，按二进制位进行"取反"运算 (~A) 将得到 -61 即为 1100 0011

<< 二进制左移运算符 A << 2 将得到 240 即为 1111 0000

>> 二进制右移运算符 A >> 2 将得到 15 即为 0000 1111

break & continue
break跳出整个循环体，continue步出单次循环

数组指针 & 指针数组

指针数组

含义： p 是一个长度为 3 的数组， p[i] 是 int*

数组指针

大写字母范围是 65 ~ 90
小写字母范围是 97 ~ 122
'0' = 48
'9' = 57

32 ~ 126（共 95 个）

其中 32 是空格 ' '

1 int *p[3];

1 char *s[3] = {"aa", "bb", "cc"};
2 printf("%s\n", s[1]); // bb

二维数组

行指针 & 列指针

行指针

行指针 = 指向“一整行”的指针
也就是：指向 int[列数] 这种数组的指针。

如果有 4 列：

列指针（其实就是普通的元素指针）

此时 p + n 指向的元素是：

结构体

1 int (*p)[3];

1 int a[2][3] = {{1,2,3},{4,5,6}};
2 int (*p)[3] = a; // 指向第0行
3 printf("%d\n", p[1][2]); // 6

1 int a[2][3] = {
2 {1, 2, 3},
3 {4, 5, 6}
4 };
5 // a 是一个2个元素的数组，每个元素是一个3个元素的数组
6 // 也就是：int[3] t[2]; 本质上 [3] 和 int 配对

1 int (*row)[4];

row 指向第0行

row + 1 指向第1行（因为它知道“一行有4个int”）

row[i][j] 可以直接当二维数组用

1 int *p = &a[0][0];

第几行： row = n / C

第几列： col = n % C

结构体的声明（反正我直接用typedef了）

允许函数以结构体为返回值，此时发生拷贝。

判断傻逼类型注释的技巧

从右向左螺旋读，遇到括号时被“挡住”。 例如对于这个愚蠢至极的数组指针定义：

这次括号把 *p 绑定在一起了：

从 p 开始读：

所以它是数组指针： p 是指针，指向“3个int的数组”

1 typedef struct {
2 int x;
3 int y;
4 } Point; // 相当于将一个匿名结构体绑定给 Point 了
5
6 Point p = {0, 0};

1 int (*p)[3];

(*p)：说明 p 是指针（因为要先解引用）
(*p)[3]：解引用后得到的东西是数组（长度 3）

